Краткий путеводитель по беспроводным технологиям «Интернета вещей». Часть 4

06.02.2019 > 12:07
Краткий путеводитель по беспроводным технологиям «Интернета вещей». Часть 4
Технологии LPWAN хорошо подходят для распределенных приложений, таких как «умный город»
Четвертая и последняя часть краткого путеводителя по беспроводным IoT-технологиям охватывает устройства с диапазонами покрытия, во много раз превышающими описанные во второй части по дальности устойчивой связи и характерные для развертывания беспроводных сетей типа PAN ближнего радиуса действия.

В этой статье, посвященной системам беспроводной связи IoT большого радиуса действия, рассмотрены широко применяемые стандарты связи, которые используют как лицензированные (NB-IoT и Cat-M1), так и не требующие (LoRa, Sigfox) лицензирования полосы радиочастотного спектра. Не упомянутая здесь технология Wi-Fi, также подходящая для систем беспроводной связи «Интернета вещей» большого радиуса действия, уже была описана в третьей части.

Понятие «Интернет вещей» обычно соотносится со стандартами, рассмотренными во второй части данной публикации и регламентирующими именно IoT-решения. Однако есть множество приложений, в которых технология «Интернета вещей» требует значительно больших дальности связи и зон покрытия одиночными устройствами. Такие сети с ограниченной мощностью и большим покрытием часто упоминаются под аббревиатурой LPWAN (англ. Low-power Wide-area Network — энергоэффективная сеть дальнего радиуса действия). Области применения этих сетей включают: медицину (мониторинг состояния пациентов амбулаторно и на дому), мониторинг ресурсов (контроль качества воды, добыча нефти и полезных ископаемых), индустрию (мониторинг и контроль на предприятиях, рассредоточенных на больших площадях), сельское хозяйство (здоровье и местонахождение животных, погода, состояние растений и водопользование). Также они используются в системах «умного города» (транспорт, парковка, качество воздуха, учет коммунальных услуг и стоков), при мониторинге зданий и сооружений и т. п. Кроме того, сети типа LPWAN могут служить точками доступа для сбора и передачи на большие расстояния данных, которые собраны беспроводными датчиками, объединенными в сетевые кластеры.

Технологии LPWAN

Связь на дальние расстояния ранее подразумевала использование достаточно габаритных устройств с относительно высокой потребляемой мощностью, которые редко питались от батарей. Но достижения в области модуляции, разработка и выпуск интегральных схем такой архитектуры, как система на кристалле (англ. System-on-Chip), значительно увеличили диапазон работы устройств с низким энергопотреблением. Кроме того, применение связи на более низких, субгигагерцовых частотах радиочастотного спектра также позволяет использовать специфику распространения радиосигналов, что может быть дополнительным и существенным преимуществом при реализации сетей дальнего радиуса действия.

Однако при более низких частотах эффективные антенны будут физически больше, чем для радиоустройств, работающих в более высокой области частот. Так, если на частоте 2,4 ГГц обычная четвертьволновая антенна имеет длину 31 мм, то на частоте 915 МГц длина той же антенны будет составлять уже около 82 мм. Тем не менее для устройств с большой дальностью связи и низким энергопотреблением более крупные и эффективные антенны (если они приемлемы с конструктивной точки зрения) могут выигрышно увеличить срок службы батареи — за счет уменьшения мощности излучаемого радиосигнала, необходимой для обеспечения требуемого покрытия зоны радиосвязью.

Применение IoT-устройств с большим радиусом покрытия создает возможности для организации сервисов связи на основе подписки, что позволяет избежать проблемы полностью неактивных установок в личных сетях с малой зоной покрытия. Компании с развитой инфраструктурой радиосвязи и большой зоной покрытия, такие как операторы сетей сотовой связи, развертывают сервисы на больших территориях, используя преимущества уже находящихся в их распоряжении сетей. Постепенно эти новые сервисы, не требующие высокой скорости передачи данных, охватывают значительные зоны покрытия, распространяясь не только на регионы, но даже на целые страны.

Некоторым компаниям для организации таких сервисов достаточно просто обновить программное обеспечение для существующих базовых станций LTE (от англ. Long-Term Evolution, буквально — долговременное развитие). LTE — это стандарт беспроводной высокоскоростной передачи данных для мобильных телефонов и других терминалов, работающих с данными. Часто обозначается как 4G LTE. Эти решения, требующие лицензирования по занимаемому спектру частот, предусматривают разные уровни обслуживания и, соответственно, абонентской платы, т. е. подойдут на любой вкус и кошелек. Коммерчески доступное и уже инсталлированное оборудование позволяет также организовать простой выход в Интернет и связь с облаком. LTE является относительно новой технологией, которая подвержена быстрым изменениям, но некоторые решения в этой области уже сейчас доступны разработчикам «Интернета вещей».

Частоты, не требующие лицензирования

LoRa

LoRaLoRa (от англ. Long Range) — это достаточно новый метод модуляции и одноименная сетевая технология, продвигаемая открытой некоммерческой организацией LoRa Alliance (консорциум). В альянс входят многие ведущие игроки рынка «Интернета вещей»: IBM, Semtech, Cisco, Inmarsat, Swisscom и др. Технология LoRa имеет несколько иной характер, чем все описанные ранее протоколы беспроводной связи малого радиуса действия, поэтому уделим ей в данном обзоре наибольшее внимание.

Как правило, под LoRa обычно подразумевается тип модуляции, а под LoRaWAN — открытый сетевой протокол LoRa, который не надо напрямую ассоциировать с LPWAN (как уже говорилось ранее, это любая энергоэффективная сеть дальнего радиуса действия). LoRaWAN используется для передачи небольших по объему пакетов данных на дальние расстояния. Такая сеть была разработана специально для распределенных сетей телеметрии, межмашинного взаимодействия, или так называемого М2М (от англ. Machine-to-Machine), и, собственно, «Интернета вещей». Сеть LoRa является одной из наиболее перспективных беспроводных технологий, обеспечивающих среду сбора данных с различного оборудования: датчиков, счетчиков и сенсоров.

В зависимости от региональных распределений, в такой сети используются радиочастоты субгигагерцового диапазона в не требующих лицензирования спектрах частот в диапазонах VHF (30–300 МГц), UHF (300 МГц — 3 ГГц) или 800–930 МГц. Поскольку технология LoRa применяет более низкие радиочастоты, чем стандарты, использующие частоты 2,4 или 5 ГГц, она отличается от них и по радиочастотным характеристикам, при этом сигналы LoRa могут проникать глубоко в здания и в места, недоступные более высокочастотным сигналам.

Модуляция LoRa сильно выделяется на фоне других типов модуляции, представленных в настоящем обзоре, и является настоящим достижением в области радиочастотных технологий. Большинство стандартов ближнего радиуса действия, как было сказано ранее, использует ту или иную разновидность модуляций FSK, OFDM, FHSS или DSSS с расширением спектра. LoRa — это набор методов модуляции, запатентованных компанией Semtech, с расширением спектра посредством линейной частотной модуляции — Chirp Spread Spectrum (CSS). В целом суть этого подхода заключается в перестройке несущей частоты по линейному закону.

Благодаря такой перестройке сигнал становится устойчивым к эффекту Допплера (для мобильных пользователей) и многолучевому замиранию в отражающей радиочастотной среде, а также получает высокий уровень помехоустойчивости. Кроме того, при таком методе расширения спектра низкие битовые скорости (до 300 бит/с) могут избежать влияния источников узкополосных помех, таких как FSK-сигналы, и успешно восстановиться на приемном конце. Это может дать линии связи LoRa преимущество в 15 дБ по сравнению с узкополосным FSK-сигналом при использовании радиочастотных сигналов одинаковой мощности. Что касается шумов, то LoRa может прекрасно и без проблем работать ниже уровня окружающего радиочастотного шума и на 20 дБ или даже еще ниже по отношению к узкополосным источникам помех — из-за усиления, присущего этому виду модуляции с расширенным спектром.

Также технология LoRa позволяет использовать различные комбинации скорости передачи данных и модуляции. Они могут быть выбраны исходя из разных соображений: например, для увеличения скорости передачи данных (до 40 Кбит/с) с меньшим диапазоном покрытия, когда именно скорость передачи является критическим фактором, или для достижения большей дальности связи с низкой радиочастотной мощностью в зашумленных средах. Дело в том, что при снижении скорости передачи данных на один бит приходится больше энергии и его легче распознать на приемном конце — следовательно, при одной и той же потребляемой мощности и чувствительности приемника дальность связи увеличивается. Интересно, что коэффициенты расширения спектра LoRa, называемые SF (от англ. Spreading Factor), при передаче данных могут быть активны в одном канале, не мешая при этом друг другу. Поскольку сигнал CSS проще декодировать, чем сигналы с другими технологиями расширения спектра, то это можно сделать и с меньшей вычислительной мощностью. Что, в свою очередь, приводит к увеличению времени автономной работы устройств «Интернета вещей», несмотря на более сложное решение в части модуляции.

Технология LoRa фокусируется прежде всего на физических (PHY) уровнях, т. е. нижних в структуре сети от LoRa Alliance. А для более высоких уровней сети консорциум определяет спецификации, которые зависят от региона. Данные передаются по радиоканалам LoRa на шлюзы (также называемые концентраторами), узлы ячеек: к ним подключаются конечные точки, через которые устройства IoT подключаются к Интернету и облачным или прикладным серверам. Консорциум LoRa также определяет требующееся тестирование и сертификацию, чтобы предусмотреть совместимость различных устройств LoRa в сети. Для обеспечения безопасности сети и данных в технологии LoRa предназначены защищенные ключи связи — как на уровне сети, так и на уровне приложений, что становится необходимым условием, когда радиосигналы распространяются в большой зоне покрытия.

Сеть LoRa может быть развернута либо как отдельная сетевая архитектура, либо как связанная сеть в тех районах земного шара, где имеются операторы сети общего пользования, которые за плату обеспечивают возможность устройств LoRa подключаться через шлюзы для передачи данных в облако. Сеть на основе технологии LoRa впервые была развернута в Европе, но она успешно распространяется и на другие регионы. Помимо компании Semtech, микросхемы LoRа в виде систем на кристалле производят ST Micro и Microchip, что дает разработчикам определенную гибкость в реализации проектов на базе технологии LoRа.

Однако нельзя забывать, что при применении рассматриваемой технологии, даже если используется не требующий лицензирования спектр частот, необходимы сертификация устройств (например, на соответствие нормам, установленным FCC Part 15.247) и подтверждение того, что конкретное устройство действительно соответствует спецификации LoRa. Для сертификации обычно требуются испытания на мощность передатчика, девиацию частоты, занимаемую полосу пропускания, гармоники и спектральную плотность мощности. Сертификацию LoRa и предварительное тестирование уже обеспечивает целый ряд авторизированных испытательных лабораторий.

Несмотря на то, что LoRa — это довольно новый стандарт для разработчиков, им доступны и микросхемы, и готовые модули, и различные тестовые инструменты.

SigFox

SigFox — это еще одна недавняя разработка в области технологии LPWAN и одноименный сервис подключения. В некотором роде она похожа на LoRa, но использует иной способ достижения аналогичных целей. Технология SigFox была разработана и запатентована в 2009 г. небольшой французской компанией (всего 80 человек персонала) с одноименным названием, которая в области LPWAN сотрудничает с рядом крупных игроков рынка, таких как Texas Instruments, Silicon Labs и ON Semiconductor. По сути, SigFox является проприетарным протоколом беспроводной сетевой связи для IoT-устройств, работающих в диапазонах до 1 ГГц, и предоставляет сеть сотовых шлюзов, которые обеспечивают подключение к Интернету и к облаку. Таким образом, это в целом похоже на коммерческие сети LoRa, но не нацелено на частные сети, где компания устанавливает и сама же поддерживает всю инфраструктуру сети.

SigFox — это односкачковая радиальная, или, как ее еще называют, звездообразная сеть со шлюзами, которые служат контроллерами этой сети. Подобно LoRa, SigFox имеет большой диапазон покрытия и ей свойственно низкое энергопотребление. Но если рассматривать SigFox как радиоканал для передачи данных, то она радикально отличается от LoRa. Для передачи данных SigFox использует сверхузкую полосу частот, так называемую Ultra Narrowband (UNB), с очень низкой скоростью передачи данных. Протокол SigFox очень прост. Он не требует квитирования (обмена сигналами для установления связи, т. е. процедуры представления или взаимного опознавания партнеров по связи при установлении соединения) и передает пакеты всего по 12 байт (плюс дополнительные данные, такие как идентификатор радиосвязи и время). Как уже было сказано, передача ведется в очень узкой полосе частот, при этом используется D-BPSK-модуляция (дифференциальная двоичная фазовая манипуляция) со скоростью 100 или 600 бит/с. Да, именно — 100 бит/с с шестисекундными циклами передачи. Однако такая низкая скорость и узкий частотный спектр позволяют экономить энергию батарей и обеспечивают большой радиус покрытия.

Из-за узкой полосы пропускания приемники могут иметь очень низкий уровень собственного шума, т. е. высокую чувствительность, достигающую порядка –140 дБм, и бюджеты линий связи около –160 дБ при использовании антенн с усилением. Это означает, что при применении технологии SigFox без кодирования для «Интернета вещей», т. е. с помощью процессоров с небольшой вычислительной мощностью, при низкой мощности передатчика (14 дБм), низких скоростях передачи данных, коротких и нечастых, не более 140 сообщений в день, можно достичь большей зоны покрытия и более продолжительного времени автономной работы узла сети. Благодаря всем этим характеристикам SigFox может быть самым эффективным решением из всех приведенных в этом обзоре технологий построения LPWAN. Сети SigFox применительно к «Интернету вещей» начали свое развитие во Франции, но уже используются в нескольких европейских странах с постоянным расширением сети и на момент написания обзора охватывают 32 страны.

Полная версия статьи опубликована на сайте Control Engineering Россия

Все Статьи

Комментарии
Авторизоваться